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Abstract. The ergodic and short-time dynamics of the Ising Sherrington-Kirkpatrick model 
have been studied using the Monte Carlo method. The ergodic time associated with each 
bond configuration has been numerically calculated using an order parameter that is only 
sensitive to global spin flips. Assuming that the mean ergodic barrier height diverges with 
system size N as N” we find A = 0.25 + 0.05. For the short-time dynamics the relaxation 
of order parameters that are insensitive to ergodic fluctuations are controlled hy a spectrum 
of barriers. The largest of these diverges as N p  where 0.25 < p < 0.45. 

1. Introduction 

At the present time it is widely believed that Parisi’s solution of the Sherrington- 
Kirkpatrick (SK) model (Parisi 1979, 1980a, b, c, d, e) is correct. This solution breaks 
the permutation symmetry between replicas and is intimately connected with the 
existence of many thermodynamic states. Parisi’s solution cures both the negative- 
entropy problem and the de Almeida-Thouless (1978) instability that are reatures of 
the original replica symmetric solution. Young (1983) has found numerical evidence 
for many thermodynamic states by using a microscopic definition for the probability 
distribution of overlaps pN(q). Above the de Almeida and Thouless (AT) line in the 
limit of N + CO, P,(q) becomes a delta function, confirming that there is only one 
thermodynamic state in this regime. However, below the AT line, PN(q) is a broad 
distribution consistent with the picture of many states. 

In an alternative approach to the S K  model Thouless, Anderson and Palmer (TAP) 
(Thouless et a1 1977) have studied the local mean field for the site magnetisations of 
a given bond configuration. Including the Onsager reaction field term in the naive 
mean-field equations yields the TAP equations. Bray and Moore (1980a), de Dominicis 
et a1 (1980), and Tanaka and Edwards (1980) have shown that there are an exponentially 
large number of solutions to the TAP equations below the AT line. These solutions may 
be interpreted as thermodynamic states separated by infinite free-energy barriers. 
Sompolinski and Zippelius (1982) have investigated the dynamics below the AT line 
starting from the Langevin equations for the relaxation of spin fluctuations. They 
conclude that the spin glass order parameters are time-persistent terms rather than 
purely static quantities. The central idea of this theory is that a large but finite system 
possesses a spectrum of relaxation times that diverge in the thermodynamic limit. 

It is interesting to investigate numerically the divergence of the barrier heights and 
relaxation times that correspond to the many thermodynamic states of the SK model. 
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Mackenzie and Young (1982, 1983) (hereafter referred to as MY) have investigated 
such properties in the Ising version of the SK model using the Monte Carlo method. 
The simulations were conducted below the AT line (H=O,  T=0.6) and suggest a 
spectrum of relaxation times, the largest of which, 5, diverges as: 

ln{&I= Ivp (1.1) 

where p = 0.27 i 0.1. This implies non-ergodic behaviour in the thermodynamic limit. 
There is a single longer time, the ergodic time, arising from the symmetry of the 
Hamiltonian under the simultaneous flipping of all the spins. M Y  have suggested that 
the ergodic time T ( N )  diverges as: 

ln{.r,}a N *  (1.2) 

where A = f , although uncertainties in their data prevent an accurate determination 
of A. 

We have conducted an extensive Monte Carlo simulation of the Ising version of 
the SK model below the AT line ( H  = 0, T = 0.5) in order to determine the exponent 
A more precisely. The divergence of the ergodic time was calculated by considering 
an order parameter that is sensitive only to global spin flips and we find that A = 
0.25 & 0.05. We also find a spectrum of times associated with the relaxation of order 
parameters that are insensitive to the ergodic fluctuations. The largest time, &, of this 
spectrum is the time taken for the order parameters to relax to their equilibrium 
statistical mechanics values. It is found that 1n{tN} diverges as N p ,  where 0.25 < p < 
0.45. If we could determine p more accurately we would naively expect that p < A ,  
although the ergodic free-energy barrier does not necessarily have to be the largest 
barrier in the system. This paper is organised in the following way. In section 2 we 
introduce the various order parameters. Section 3 is concerned with a brief description 
of our Monte Carlo method. Sections 4 and 5 are, respectively, concerned with our 
results for the ergodic and short-time dynamics. Our conclusions are presented in 
section 6. 

2. Order parameters 

The Hamiltonian of the SK model in the absence of an external magnetic field is 

H =  - ' C J S S  2 U 1 J *  (2.1) 
ii 

The S, are Ising spins interacting, via bonds Jl, chosen from a Gaussian distribution, 
with all the other spins in the system. The mean of this distribution is zero and the 
standard deviation is ( N  - 1)-1'2, where N is the total number of spins. Boltzmann's 
constant is set equal to unity so that in the thermodynamic limit the critical temperature 
is unity in zero magnetic field. Given that the phase space is a many-valley structure 
it is necessary to distinguish between single and many-valley order parameters. Only 
the latter corresponds to the complete Gibbs average. Consider the spin self-correlation 
function q N ( t )  as an order parameter: 

(2.2) 

The ( ), represents averaging over different bond configurations and the ( )T represents 
the Gibbs average. For finite systems the average ( ) T  is correct because all of the 



Dynamics of the Ising S K  model 4015 

accessible phase space can be sampled. To obtain the full Gibbs average the thermo- 
dynamic limit must be applied carefully. For example, taking the limit N+co first, 
followed by t + CO, localises the system in a single valley yielding the Edwards-Anderson 
(1975) order parameter q E A :  

lim lim q N ( t ) = q E A .  
r-tm N-03 

For the Gibbs average q these limits 

lim lim lim q N (  t )  = q. 
h - t x  N - m  r-m 

are reversed: 

This reversal allows all of the accessible phase space to be sampled. The uniform 
magnetic field h breaks the spin inversion symmetry of the Hamiltonian. Young and 
Kirkpatrick (1982) have pointed out that the limit h + 0 is difficult to apply to finite 
systems because h must satisfy the inequality: 

h >> T I J N  (2.5) 
where T is the temperature. This difficulty can be avoided by defining order parameters 
that are insensitive to the spin inversion symmetry of the Hamiltonian. Thus, throughout 
this study, we work without an applied magnetic field. Following MY we define: 

and 

The Gibbs averages are defined as: 

lim lim q$)( t )  = q‘*’ 
N + x  1-03 

and 

lim lim qyd( t )  = q. 
N-03 1-03 

For a Monte Carlo simulation the previous definitions are impractical because we 
are restricted to finite systems and computing times. The limit t +- 00 is replaced by the 
condition t > teq ,  where t , ,  is the longest relevant relaxation time. The infinite limit 
N + 00 is dropped and instead we deal with finite-size statistical mechanics averages. 
These extrapolate to Parisi’s predictions for q‘*’ and q in the thermodynamic limit 
(Mackenzie and Young 1982, 1983). 

3. Simulation method 

The Monte Carlo method is a Markov process and is therefore governed by the 
master equation: 
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Here x is a state vector representing a particular spin configuration of the system. 
W ( x  -+ x ’ )  is the transition probability, per unit time, of the move x -+ x ‘ .  The equilibrium 
probability distribution P,,(x)  is a stationary solution of (3.1) provided the detailed- 
balance condition is satisfied: 

P,,(x)  W(x  + x ‘ )  = Peq(x’ )  W(X‘ + x).  (3.2) 

We use the Glauber (1963) dynamics in which 

1 
W ( X ’ - + X )  =- ( 1  -tanh([H(xf)-H(x)]/2T}). 

2 7 0  
(3.3) 

This choice of W(x’ -+ x )  yields a Boltzmann equilibrium probability distribution. The 
spins are updated sequentially using single spin-flip moves. 

The three order parameters that we calculate, namely q N ( t ) ,  qTd(t) and qg)(f ) ,  
all involve a thermal average followed by a disorder average. The correct way to 
perform the thermal average for a given bond configuration is to perform many separate 
uncorrelated Monte Carlo runs. Hence: 

1 R  

where R is the number of runs and the summation is over each of the n separate runs. 
This process must be carried out for each bond configuration and is therefore very 
time consuming. This is exactly what we do in our study of the ergodic dynamics. M Y  

have pointed out that the short-time dynamics can be more efficiently studied by 
performing the bond and thermal averages together. For every bond configuration only 
a single Monte Carlo run is performed. The averaging is now given by: 

One of the main difficulties of any Monte Carlo simulation is ensuring that the system 
is in equilibrium before sampling takes place. Bray and Moore (1980b) have shown 
that the following convenient relation holds in equilibrium: 

q‘2’=1-2TIU(T) / .  (3.6) 

U(T) is the internal energy per spin and is calculated at the end of the equilibration 
period. Hence prior to sampling for q‘*’, we already know what it should relax to. If 
the equilibration period is too short, then the out-of-equilibrium values I U (  T)I and 
q”) only satisfy the following inequality: 

q‘2’< 1-277 U (  T)I. (3.7) 

In this case the calculations were repeated until equation (3.6) was satisfied. The data 
concerning the Monte Carlo statistics are presented in table 1. The values quoted for 
qTd, 1 U( T)I and qg) are the equilibrium values. If the equilibrium values of 1 U (  T)l 
are inserted into equation (3.6), then the predicted values of q g )  agree, to four decimal 
places, with the equilibrium data in table 1. 

Note that some of the systems have identical equilibration times. This is not an 
error. We used too many equilibration steps for the smaller systems. 
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Table 1. Monte Carlo statistics data. 

No of 
No of bond equilibration 

N configurations steps qYd IU(T)I q? 

16 10 000 1000 0.590 0.6064 0.3936 
32 10 000 1000 0.560 0.6391 0.3608 
64 7 105 5 000 0.540 0.6637 0.3362 

128 1 000 10 000 0.531 0.6813 0.3186 
256 240 10 000 0.522 0.6919 0.3080 

4. Ergodic dynamics 

In this section we shall only be concerned with the dynamics of global spin flips that 
preserve the spin inversion symmetry of the Hamiltonian. Ergodic fluctuations are 
most easily examined by considering the following combination of order parameters: 

The notation (t, { J } )  denotes that q N (  t )  and qYd( f )  have been calculated for a given 
bond configuration. qN(t, { J } )  relaxes as a result of short-time and ergodic dynamics, 
whereas qYd( t, { J } )  relaxes only via short-time dynamics. Therefore, the short-time 
dynamics are factored out of the ratio R N (  t ,  { J } ) ,  which is unity for times much less 
than the ergodic time. For ergodic timescales, R N ( f ,  { J } )  decays to zero as shown 
schematically in figure 1. For each system size N we have ca!culated R N (  t ,  { J } )  for a 
large number of bond configurations and find that on ergodic timescales it decays 
exponentially: 

R N ( 4  { J } )  =exP(-t/TN({Jl)) (4.2) 

T~({J}) is the ergodic time for a given bond configuration. Some typical examples of 
this behaviour for N = 8 are shown in figure 2. Such exponential decay implies that a 
single barrier separates a pure state and its globally spin-flipped counterpart in a given 

7 " I J )  

I n  t 
Figure 1. The schematic decay of R N ( t , { J } ) .  Note that qYd(t,{J}) and q N ( t , { J } )  are 
equal for times t<<  T ~ { J } .  For t - T ~ ,  R N ( ~ ,  { J } )  decays to zero purely exponentially. 
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0 100 200 300 400 500 
t 

Figure 2. This figure shows ln(R,(t, {J})) plotted as a function of time t for different bond 
configurations. The straight lines indicate that RN( t ,  {J}) decays purely exponentially on 
ergodic timescales. This data was obtained using the system size N = 8. 

bond configuration. The barrier height B , { J }  and the relaxation time T ~ { J }  are related 
by the Arrenhius law: 

In(.rdJ})X B d J I l T .  (4.3) 

Averaging over a large number of bond configurations introduces a distribution of 
ergodic barrier heights such as the one shown in figure 3. This was obtained by 
calculating In(&( t, {J})) for each bond configuration and performing a least-squares 
fit for 7 N { J } .  We are interested in how the mean and variance of these distributions 

r 
t- 

I I 

1 
I 

4 

Figure 3. The distribution of ergodic barriers p( B , { J } ) )  plotted as a function of B N { J } /  T. 
This was obtained by calculating In(R,( t, {J})) for each bond configuration and performing 
a least-squares fit for the ergodic time T ~ { J } .  
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depend on the system size N. Assuming that the mean barrier height diverges as: 

( B N { J } ) J  OC N A  (4.4) 

we find that A = 0.25 f 0.05 as shown in figure 4. 
Note that Mackenzie and Young (1982,1983) have suggested that A = 4. We suggest 

that our value is correct because the method we have used is more accurate than MY. 
First let us review our method. An accurate determination of A depends upon an 
accurate determination of the mean barrier height ( B N { J } ) J  (see equation (4.4)). This 
has been determined by calculating the distribution of ergodic barrier heights from 
the purely exponential decay of RN(  t, { J } ) .  The determination of the single barrier 
height B N { J }  associated with a given bond configuration results from least squares 
fitting a straight line to In RN(  t, { J } ) .  The linear plots shown in figure 2 imply that an 
accurate determination of B N { J }  is possible. MY determined A using a different method. 
They determined the mean barrier height (BN{J} )J  by averaging the ergodic fluctuations 
in q N ( t ,  { J } ) .  This process involves recording the ergodic fluctuations of qN(  t, { J } )  for 
a bond configuration and averaging them to obtain an estimate of the single barrier 
height BN{J}  associated with this bond configuration. This process is very computa- 
tionally expensive and limited MY to sampling over a small number of bond configur- 
ations. We have used a much greater number of bond configurations and have therefore 
found that A = 0.25 * 0.05 rather than the MY estimate of A - 4. 

The system sizes 8 to 10 are clearly not asymptotic and have been disregarded. The 
self-averaging of the barrier height distributions can be investigated by calculating the 
normalised variance: 

We define self-averaging to be limN+m (CL) = 0. This property is interesting because 
self-averaging implies that in the thermodynamic limit a single barrier separates all 

+ 

I 
I 

2 .O 2.5 3.0 3 .5 
in N 

Figure 4. This figure shows ln((BN{J}),) plotted as a function of In N. The straight-line 
fit indicates that the mean ergodic barrier height ( E N { J } ) ,  diverges as N A ,  where A = 
0.25*0.05. The system sizes 8 to 10 are clearly not asymptotic and have been ignored. 
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Figure 5. This figure shows In 0% plotted as a function of In N. Self-averaging of the 
distribution of ergodic barriers implies that 1imN+- U” = 0. The scatter of the data points 
suggests a lack of self-averaging. However, the size of the error bars prevent a definite 
conclusion on this issue. 

the pure phases from their globally spin-flipped neighbours. Our data for a%, presented 
in figure 5 ,  suggest a lack of self-averaging. However, the error bars on the data 
prevent a definite conclusion from being made. 

5. Short-time dynamics 

In this section we determine the divergence of the free-energy barriers between the 
pure states residing in half of the accessible phase space. The other half of the phase 
space contains the globally spin-inverted counterparts of these pure states. We suppress 
the effects of fluctuations between each half of the phase space by using the order 
parameter &)( t) ,  which is insensitive to ergodic fluctuations. 

In figure 6 we present data showing how & ( t )  relaxes to its finite-size statistical 
mechanics average value q$) for N = 32. This data has the following obvious features. 
For times greater than some relaxation time SN &’(?) is time independant. Such 
behaviour suggests that &I( t )  relaxes by thermal activation over a spectrum of 
free-energy barriers. When activation over the entire spectrum has occurred qs)( t )  
develops its statistical mechanics plateau value. We have obtained data similar to that 
shown in figure 6 for the system sizes N = 16, 64, 128, 256. If we assume that &,, 
diverges as In(&)= N”, then p can be determined from SN. However, for the larger 
systems a precise determination of &, from the onset of the statistical mechanics 
average plateau is difficult. Instead, we extract p more accurately by collapsing the 
data for different system sizes onto a single universal curve using a dynamic scaling 
ansatz. The abrupt change of gradient in figure 6 when &I( t )  becomes time independent 
suggests In( t)/ln( &) as a suitable scaling variable. Given that we assume that In( &) OC 
N” this scaling ansatz becomes In( ?)/W. The order parameter &)( t )  decays to its 
size-dependent statistical mechanics value 4s’ .  Hence, as well as the dynamic scaling 
ansatz, the static finite effects must be removed from the data. We have done this by 
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I 
0 2 4 6 0 

In t 
Figure 6. This figure shows &)( t )  plotted as a function In 1; &)( t )  is time independent 
for t > .& because it is insensitive to ergodic fluctuations. 

choosing the dependent variable to be: 

q$)( t )  - q$) 
' (5.1) 

let us call this variable Y N ( f ) .  For all N this variable is restricted to the interval 
0 s  Y N ( t )  s 1. We produced a range of plots of Y N ( t )  as a function of ln(t)/Np, each 
with a different value of p. Only values of p in the range 0.25 < p < 0.45 yielded 
acceptable universal curves. A typical result using p = 0.34 is presented in figure 7. 
Our bounds for p are consistent with the recent study of Vertechi and Virasoro (1989) 
in which they find 0.26 < p < 0.42. The sensitivity of the scaling ansatz to variations 

1 I 
0 0 4  0.8 1.2 1.6 

un f 1 / ~ 0 . 3 4  

Figure7. YN( t )  plotted as a function of ln(r)/N@ where p = 0.34. The data for the different 
system sizes fall on a universal curve. The system sizes (N) are represented a!! follows: x,  
16; A, 32; D, 64; 0, 128; 0, 256. 
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0 1 2 3 4 5 
(In t 1 /No, ’  

Figure 8. Y N ( t )  plotted as a function of I n ( t ) / W  where ( a )  p = 0.60 and (b) N=0.10. 
The data points do not fall on a universal curve because p is unacceptably large. The 
system sizes are as represented in figure 7. 

in p is demonstrated in figures 8(a) and (b). These figures were obtained using values 
of p outside the acceptable bounds. 

The data from the previous section implies that the ergodic energy barrier(s?) 
diverges as N”, where A = 0.25 *0.05. We would naively expect that a more accurate 
determination of p would yield p < A. However, the ergodic free-energy barrier(s?) 
does not necessarily have to be the largest free-energy barrier in the system. 

6. Conclusions 

Extensive Monte Carlo simulations of the king model have been conducted below 
the AT line ( h  = 0, T =I 0.5). Each bond configuration has an ergodic time that has been 
calculated by studying the decay of an order parameter that is only sensitive to ergodic 
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fluctuations. The mean ergodic time averaged over bond configurations diverges as 
N A ,  where A = 0.25 i 0.50. The distribution of ergodic barriers associated with the 
different bond configurations may not be self-averaging. For the short-time dynamics 
we find a spectrum of barriers the largest of which diverges as N M  where 0.25 <: p < 0.45. 
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